Sunday, May 22, 2022
No menu items!
HomeChemistryA puromycin-dependent activity-based sensing probe for histochemical staining of hydrogen peroxide in...

A puromycin-dependent activity-based sensing probe for histochemical staining of hydrogen peroxide in cells and animal tissues


  • Baynes, J. W. Function of oxidative stress in growth of issues in diabetes. Diabetes 40, 405–412 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Multhaup, G. et al. Reactive oxygen species and Alzheimer’s illness. Biochem. Pharmacol. 54, 533–539 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stone, J. R. & Yang, S. Hydrogen peroxide: a signaling messenger. Antioxid. Redox Sign. 8, 243–270 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rhee, S. G. H2O2, a crucial evil for cell signaling. Science 312, 1882–1883 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • D’Autréaux, B. & Toledano, M. B. ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Finkel, T., Serrano, M. & Blasco, M. A. The widespread biology of most cancers and ageing. Nature 448, 767–774 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Winterbourn, C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dickinson, B. C. & Chang, C. J. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504–511 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Murphy, M. P. et al. Unraveling the organic roles of reactive oxygen species. Cell Metab. 13, 361–366 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schieber, M. & Chandel, N. S. ROS perform in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reichmann, D., Voth, W. & Jakob, U. Sustaining a wholesome proteome throughout oxidative stress. Mol. Cell 69, 203–213 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling brokers. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Inoguchi, T. et al. Excessive glucose stage and free fatty acid stimulate reactive oxygen species manufacturing via protein kinase C–dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49, 1939–1945 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Park, L. et al. Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc. Natl Acad. Sci. USA. 105, 1347–1352 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schmidt, Ok. N., Amstad, P., Cerutti, P. & Baeuerle, P. A. The roles of hydrogen peroxide and superoxide as messengers within the activation of transcription issue NF-κB. Chem. Biol. 2, 13–22 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guyton, Ok. Z., Liu, Y., Gorospe, M., Xu, Q. & Holbrook, N. J. Activation of mitogen-activated protein kinase by H2O2: position in cell survival following oxidant damage. J. Biol. Chem. 271, 4138–4142 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, S.-R., Kwon, Ok.-S., Kim, S.-R. & Rhee, S. G. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal development issue. J. Biol. Chem. 273, 15366–15372 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Salmeen, A. et al. Redox regulation of protein tyrosine phosphatase 1B includes a sulphenyl-amide intermediate. Nature 423, 769–773 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Avshalumov, M. V. & Rice, M. E. Activation of ATP-sensitive Ok+ (OkATP) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine launch. Proc. Natl Acad. Sci. USA. 100, 11729–11734 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dinauer, M. C., Orkin, S. H., Brown, R., Jesaitis, A. J. & Parkos, C. A. The glycoprotein encoded by the X-linked persistent granulomatous illness locus is a part of the neutrophil cytochrome b advanced. Nature 327, 717–720 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Volpp, B., Nauseef, W. & Clark, R. Two cytosolic neutrophil oxidase parts absent in autosomal persistent granulomatous illness. Science 242, 1295–1297 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Clark, R. A. et al. Genetic variants of persistent granulomatous illness: prevalence of deficiencies of two cytosolic parts of the NADPH oxidase system. N. Engl. J. Med. 321, 647–652 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ohba, M., Shibanuma, M., Kuroki, T. & Nostril, Ok. Manufacturing of hydrogen peroxide by reworking development factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J. Cell Biol. 126, 1079–1088 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sundaresan, M., Yu, Z.-X., Ferrans, V. J., Irani, Ok. & Finkel, T. Requirement for technology of H2O2 for platelet-derived development issue sign transduction. Science 270, 296–299 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kimura, T., Okajima, F., Sho, Ok., Kobayashi, I. & Kondo, Y. Thyrotropin-induced hydrogen peroxide manufacturing in FRTL-5 thyroid cells is mediated not by adenosine 3′, 5′-monophosphate, however by Ca2+ signaling adopted by phospholipase-A2 activation and potentiated by an adenosine by-product. Endocrinology 136, 116–123 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bae, Y. S. et al. Epidermal development issue (EGF)-induced technology of hydrogen peroxide. Function in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217–221 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mukhin, Y. V. et al. 5-Hydroxytryptamine1A receptor/Giβγ stimulates mitogen-activated protein kinase through NAD(P)H oxidase and reactive oxygen species upstream of src in chinese language hamster ovary fibroblasts. Biochem. J. 347, 61–67 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dickinson, B. C., Peltier, J., Stone, D., Schaffer, D. V. & Chang, C. J. Nox2 redox signaling maintains important cell populations within the mind. Nat. Chem. Biol. 7, 106–112 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kamsler, A. & Segal, M. Hydrogen peroxide modulation of synaptic plasticity. J. Neurosci. 23, 269–276 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tejada-Simon, M. V. et al. Synaptic localization of a practical NADPH oxidase within the mouse hippocampus. Mol. Cell. Neurosci. 29, 97–106 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brennan, A. M. et al. NADPH oxidase is the first supply of superoxide induced by NMDA receptor activation. Nat. Neurosci. 12, 857–863 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • De Pasquale, R., Beckhauser, T. F., Hernandes, M. S. & Giorgetti Britto, L. R. LTP and LTD within the visible cortex require the activation of NOX2. J. Neurosci. 34, 12778–12787 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Le Belle, J. E. et al. Proliferative neural stem cells have excessive endogenous ROS ranges that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant method. Cell Stem Cell 8, 59–71 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Xu, C., Luo, J., He, L., Montell, C. & Perrimon, N. Oxidative stress induces stem cell proliferation through TRPA1/RyR-mediated Ca2+ signaling within the Drosophila midgut. eLife 6, e22441 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • O’Neill, J. S. & Reddy, A. B. Circadian clocks in human pink blood cells. Nature 469, 498–503 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wible, R. S. et al. NRF2 regulates core and stabilizing circadian clock loops, coupling redox and timekeeping in Mus musculus. eLife 7, e31656 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pei, J.-F. et al. Diurnal oscillations of endogenous H2O2 sustained by p66Shc regulate circadian clocks. Nat. Cell Biol. 21, 1553–1564 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates speedy wound detection in zebrafish. Nature 459, 996–999 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hervera, A. et al. Reactive oxygen species regulate axonal regeneration via the discharge of exosomal NADPH oxidase 2 complexes into injured axons. Nat. Cell Biol. 20, 307–319 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lippert, A. R., Van de Bittner, G. C. & Chang, C. J. Boronate oxidation as a bioorthogonal response strategy for finding out the chemistry of hydrogen peroxide in dwelling methods. Acc. Chem. Res. 44, 793–804 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chan, J., Dodani, S. C. & Chang, C. J. Response-based small-molecule fluorescent probes for chemoselective bioimaging. Nat. Chem. 4, 973–984 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brewer, T. F., Garcia, F. J., Onak, C. S., Carroll, Ok. S. & Chang, C. J. Chemical approaches to discovery and examine of sources and targets of hydrogen peroxide redox signaling via NADPH oxidase proteins. Annu. Rev. Biochem. 84, 765–790 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bruemmer, Ok. J., Crossley, S. W. M. & Chang, C. J. Exercise-based sensing: an artificial strategies strategy for selective molecular imaging and past. Angew. Chem. Int. Ed. 59, 13734–13762 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chang, M. C. Y., Pralle, A., Isacoff, E. Y. & Chang, C. J. A selective, cell-permeable optical probe for hydrogen peroxide in dwelling cells. J. Am. Chem. Soc. 126, 15392–15393 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miller, E. W., Tulyathan, O., Isacoff, E. Y. & Chang, C. J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nat. Chem. Biol. 3, 263–267 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dickinson, B. C., Huynh, C. & Chang, C. J. A palette of fluorescent probes with various emission colours for imaging hydrogen peroxide signaling in dwelling cells. J. Am. Chem. Soc. 132, 5906–5915 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Srikun, D., Miller, E. W., Domaille, D. W. & Chang, C. J. An ICT-based strategy to ratiometric fluorescence imaging of hydrogen peroxide produced in dwelling cells. J. Am. Chem. Soc. 130, 4596–4597 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Albers, A. E., Okreglak, V. S. & Chang, C. J. A FRET-based strategy to ratiometric fluorescence detection of hydrogen peroxide. J. Am. Chem. Soc. 128, 9640–9641 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chung, C., Srikun, D., Lim, C. S., Chang, C. J. & Cho, B. R. A two-photon fluorescent probe for ratiometric imaging of hydrogen peroxide in reside tissue. Chem. Commun. 47, 9618–9620 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Dickinson, B. C. & Chang, C. J. A targetable fluorescent probe for imaging hydrogen peroxide within the mitochondria of dwelling cells. J. Am. Chem. Soc. 130, 9638–9639 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dickinson, B. C., Tang, Y., Chang, Z. & Chang, C. J. A nuclear-localized fluorescent hydrogen peroxide probe for monitoring sirtuin-mediated oxidative stress responses in vivo. Chem. Biol. 18, 943–948 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miller, E. W., Dickinson, B. C. & Chang, C. J. Aquaporin-3 mediates hydrogen peroxide uptake to control downstream intracellular signaling. Proc. Natl Acad. Sci. USA. 107, 15681–15686 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Iwashita, H., Castillo, E., Messina, M. S., Swanson, R. A. & Chang, C. J. A tandem activity-based sensing and labeling technique allows imaging of transcellular hydrogen peroxide signaling. Proc. Natl Acad. Sci. USA. 118, e2018513118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Van de Bittner, G. C., Dubikovskaya, E. A., Bertozzi, C. R. & Chang, C. J. In vivo imaging of hydrogen peroxide manufacturing in a murine tumor mannequin with a chemoselective bioluminescent reporter. Proc. Natl Acad. Sci. USA. 107, 21316–21321 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Van de Bittner, G. C., Bertozzi, C. R. & Chang, C. J. Technique for dual-analyte luciferin imaging: in vivo bioluminescence detection of hydrogen peroxide and caspase exercise in a murine mannequin of acute Irritation. J. Am. Chem. Soc. 135, 1783–1795 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jin, L. et al. Glutamate dehydrogenase 1 alerts via antioxidant glutathione peroxidase 1 to control redox homeostasis and tumor development. Most cancers Cell 27, 257–270 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schoenfeld, J. D. et al. O2 and H2O2–mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM most cancers cells to pharmacological ascorbate. Most cancers Cell 31, 487–500 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chung, C. Y.-S., Timblin, G. A., Saijo, Ok. & Chang, C. J. Versatile histochemical strategy to detection of hydrogen peroxide in cells and tissues primarily based on puromycin staining. J. Am. Chem. Soc. 140, 6109–6121 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dhibi, M. et al. The consumption of excessive fats food regimen with totally different trans fatty acid ranges differentially induces oxidative stress and non alcoholic fatty liver illness (NAFLD) in rats. Nutr. Metab. 8, 65–77 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Bilan Dmitry, S. & Belousov Vsevolod, V. In vivo imaging of hydrogen peroxide with HyPer probes. Antioxid. Redox Sign. 29, 569–584 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morgan, B. et al. Actual-time monitoring of basal H2O2 ranges with peroxiredoxin-based probes. Nat. Chem. Biol. 12, 437–443 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Srikun, D., Albers, A. E., Nam, C. I., Iavarone, A. T. & Chang, C. J. Organelle-targetable fluorescent probes for imaging hydrogen peroxide in dwelling cells through SNAP-Tag protein labeling. J. Am. Chem. Soc. 132, 4455–4465 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dickinson, B. C., Lin, V. S. & Chang, C. J. Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of reside cells. Nat. Protoc. 8, 1249–1259 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Szweda, P. A., Tsai, L. & Szweda, L. I. Immunochemical detection of a fluorophore derived from the lipid peroxidation product 4-hydroxy-2-nonenal and lysine. In Oxidants and Antioxidants: Ultrastructure and Molecular Biology Protocols (ed. Armstrong, D.) Vol. 196 277–290 (Humana Press, 2002).

  • Spangler, B. et al. A reactivity-based probe of the intracellular labile ferrous iron pool. Nat. Chem. Biol. 12, 680–685 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schmidt, E. Ok., Clavarino, G., Ceppi, M. & Pierre, P. SUnSET, a nonradioactive technique to watch protein synthesis. Nat. Strategies 6, 275–277 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Su, Ok.-H. et al. HSF1 critically attunes proteotoxic stress sensing by mTORC1 to fight stress and promote development. Nat. Cell Biol. 18, 527–539 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • tom Dieck, S. et al. Direct visualization of newly synthesized goal proteins in situ. Nat. Strategies 12, 411–414 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Deliu, L. P., Ghosh, A. & Grewal, S. S. Investigation of protein synthesis in Drosophila larvae utilizing puromycin labelling. Biol. Open 6, 1229–1234 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bielczyk-Maczyńska, E. et al. The ribosome biogenesis protein Nol9 is important for definitive hematopoiesis and pancreas morphogenesis in zebrafish. PLoS Genet. 11, e1005677 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments