Baynes, J. W. Function of oxidative stress in growth of issues in diabetes. Diabetes 40, 405–412 (1991).
Multhaup, G. et al. Reactive oxygen species and Alzheimer’s illness. Biochem. Pharmacol. 54, 533–539 (1997).
Stone, J. R. & Yang, S. Hydrogen peroxide: a signaling messenger. Antioxid. Redox Sign. 8, 243–270 (2006).
Rhee, S. G. H2O2, a crucial evil for cell signaling. Science 312, 1882–1883 (2006).
D’Autréaux, B. & Toledano, M. B. ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).
Finkel, T., Serrano, M. & Blasco, M. A. The widespread biology of most cancers and ageing. Nature 448, 767–774 (2007).
Winterbourn, C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286 (2008).
Dickinson, B. C. & Chang, C. J. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504–511 (2011).
Murphy, M. P. et al. Unraveling the organic roles of reactive oxygen species. Cell Metab. 13, 361–366 (2011).
Schieber, M. & Chandel, N. S. ROS perform in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).
Reichmann, D., Voth, W. & Jakob, U. Sustaining a wholesome proteome throughout oxidative stress. Mol. Cell 69, 203–213 (2018).
Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling brokers. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).
Inoguchi, T. et al. Excessive glucose stage and free fatty acid stimulate reactive oxygen species manufacturing via protein kinase C–dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49, 1939–1945 (2000).
Park, L. et al. Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc. Natl Acad. Sci. USA. 105, 1347–1352 (2008).
Schmidt, Ok. N., Amstad, P., Cerutti, P. & Baeuerle, P. A. The roles of hydrogen peroxide and superoxide as messengers within the activation of transcription issue NF-κB. Chem. Biol. 2, 13–22 (1995).
Guyton, Ok. Z., Liu, Y., Gorospe, M., Xu, Q. & Holbrook, N. J. Activation of mitogen-activated protein kinase by H2O2: position in cell survival following oxidant damage. J. Biol. Chem. 271, 4138–4142 (1996).
Lee, S.-R., Kwon, Ok.-S., Kim, S.-R. & Rhee, S. G. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal development issue. J. Biol. Chem. 273, 15366–15372 (1998).
Salmeen, A. et al. Redox regulation of protein tyrosine phosphatase 1B includes a sulphenyl-amide intermediate. Nature 423, 769–773 (2003).
Avshalumov, M. V. & Rice, M. E. Activation of ATP-sensitive Ok+ (OkATP) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine launch. Proc. Natl Acad. Sci. USA. 100, 11729–11734 (2003).
Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004).
Dinauer, M. C., Orkin, S. H., Brown, R., Jesaitis, A. J. & Parkos, C. A. The glycoprotein encoded by the X-linked persistent granulomatous illness locus is a part of the neutrophil cytochrome b advanced. Nature 327, 717–720 (1987).
Volpp, B., Nauseef, W. & Clark, R. Two cytosolic neutrophil oxidase parts absent in autosomal persistent granulomatous illness. Science 242, 1295–1297 (1988).
Clark, R. A. et al. Genetic variants of persistent granulomatous illness: prevalence of deficiencies of two cytosolic parts of the NADPH oxidase system. N. Engl. J. Med. 321, 647–652 (1989).
Ohba, M., Shibanuma, M., Kuroki, T. & Nostril, Ok. Manufacturing of hydrogen peroxide by reworking development factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J. Cell Biol. 126, 1079–1088 (1994).
Sundaresan, M., Yu, Z.-X., Ferrans, V. J., Irani, Ok. & Finkel, T. Requirement for technology of H2O2 for platelet-derived development issue sign transduction. Science 270, 296–299 (1995).
Kimura, T., Okajima, F., Sho, Ok., Kobayashi, I. & Kondo, Y. Thyrotropin-induced hydrogen peroxide manufacturing in FRTL-5 thyroid cells is mediated not by adenosine 3′, 5′-monophosphate, however by Ca2+ signaling adopted by phospholipase-A2 activation and potentiated by an adenosine by-product. Endocrinology 136, 116–123 (1995).
Bae, Y. S. et al. Epidermal development issue (EGF)-induced technology of hydrogen peroxide. Function in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217–221 (1997).
Mukhin, Y. V. et al. 5-Hydroxytryptamine1A receptor/Giβγ stimulates mitogen-activated protein kinase through NAD(P)H oxidase and reactive oxygen species upstream of src in chinese language hamster ovary fibroblasts. Biochem. J. 347, 61–67 (2000).
Dickinson, B. C., Peltier, J., Stone, D., Schaffer, D. V. & Chang, C. J. Nox2 redox signaling maintains important cell populations within the mind. Nat. Chem. Biol. 7, 106–112 (2011).
Kamsler, A. & Segal, M. Hydrogen peroxide modulation of synaptic plasticity. J. Neurosci. 23, 269–276 (2003).
Tejada-Simon, M. V. et al. Synaptic localization of a practical NADPH oxidase within the mouse hippocampus. Mol. Cell. Neurosci. 29, 97–106 (2005).
Brennan, A. M. et al. NADPH oxidase is the first supply of superoxide induced by NMDA receptor activation. Nat. Neurosci. 12, 857–863 (2009).
De Pasquale, R., Beckhauser, T. F., Hernandes, M. S. & Giorgetti Britto, L. R. LTP and LTD within the visible cortex require the activation of NOX2. J. Neurosci. 34, 12778–12787 (2014).
Le Belle, J. E. et al. Proliferative neural stem cells have excessive endogenous ROS ranges that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant method. Cell Stem Cell 8, 59–71 (2011).
Xu, C., Luo, J., He, L., Montell, C. & Perrimon, N. Oxidative stress induces stem cell proliferation through TRPA1/RyR-mediated Ca2+ signaling within the Drosophila midgut. eLife 6, e22441 (2017).
O’Neill, J. S. & Reddy, A. B. Circadian clocks in human pink blood cells. Nature 469, 498–503 (2011).
Wible, R. S. et al. NRF2 regulates core and stabilizing circadian clock loops, coupling redox and timekeeping in Mus musculus. eLife 7, e31656 (2018).
Pei, J.-F. et al. Diurnal oscillations of endogenous H2O2 sustained by p66Shc regulate circadian clocks. Nat. Cell Biol. 21, 1553–1564 (2019).
Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates speedy wound detection in zebrafish. Nature 459, 996–999 (2009).
Hervera, A. et al. Reactive oxygen species regulate axonal regeneration via the discharge of exosomal NADPH oxidase 2 complexes into injured axons. Nat. Cell Biol. 20, 307–319 (2018).
Lippert, A. R., Van de Bittner, G. C. & Chang, C. J. Boronate oxidation as a bioorthogonal response strategy for finding out the chemistry of hydrogen peroxide in dwelling methods. Acc. Chem. Res. 44, 793–804 (2011).
Chan, J., Dodani, S. C. & Chang, C. J. Response-based small-molecule fluorescent probes for chemoselective bioimaging. Nat. Chem. 4, 973–984 (2012).
Brewer, T. F., Garcia, F. J., Onak, C. S., Carroll, Ok. S. & Chang, C. J. Chemical approaches to discovery and examine of sources and targets of hydrogen peroxide redox signaling via NADPH oxidase proteins. Annu. Rev. Biochem. 84, 765–790 (2015).
Bruemmer, Ok. J., Crossley, S. W. M. & Chang, C. J. Exercise-based sensing: an artificial strategies strategy for selective molecular imaging and past. Angew. Chem. Int. Ed. 59, 13734–13762 (2019).
Chang, M. C. Y., Pralle, A., Isacoff, E. Y. & Chang, C. J. A selective, cell-permeable optical probe for hydrogen peroxide in dwelling cells. J. Am. Chem. Soc. 126, 15392–15393 (2004).
Miller, E. W., Tulyathan, O., Isacoff, E. Y. & Chang, C. J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nat. Chem. Biol. 3, 263–267 (2007).
Dickinson, B. C., Huynh, C. & Chang, C. J. A palette of fluorescent probes with various emission colours for imaging hydrogen peroxide signaling in dwelling cells. J. Am. Chem. Soc. 132, 5906–5915 (2010).
Srikun, D., Miller, E. W., Domaille, D. W. & Chang, C. J. An ICT-based strategy to ratiometric fluorescence imaging of hydrogen peroxide produced in dwelling cells. J. Am. Chem. Soc. 130, 4596–4597 (2008).
Albers, A. E., Okreglak, V. S. & Chang, C. J. A FRET-based strategy to ratiometric fluorescence detection of hydrogen peroxide. J. Am. Chem. Soc. 128, 9640–9641 (2006).
Chung, C., Srikun, D., Lim, C. S., Chang, C. J. & Cho, B. R. A two-photon fluorescent probe for ratiometric imaging of hydrogen peroxide in reside tissue. Chem. Commun. 47, 9618–9620 (2011).
Dickinson, B. C. & Chang, C. J. A targetable fluorescent probe for imaging hydrogen peroxide within the mitochondria of dwelling cells. J. Am. Chem. Soc. 130, 9638–9639 (2008).
Dickinson, B. C., Tang, Y., Chang, Z. & Chang, C. J. A nuclear-localized fluorescent hydrogen peroxide probe for monitoring sirtuin-mediated oxidative stress responses in vivo. Chem. Biol. 18, 943–948 (2011).
Miller, E. W., Dickinson, B. C. & Chang, C. J. Aquaporin-3 mediates hydrogen peroxide uptake to control downstream intracellular signaling. Proc. Natl Acad. Sci. USA. 107, 15681–15686 (2010).
Iwashita, H., Castillo, E., Messina, M. S., Swanson, R. A. & Chang, C. J. A tandem activity-based sensing and labeling technique allows imaging of transcellular hydrogen peroxide signaling. Proc. Natl Acad. Sci. USA. 118, e2018513118 (2021).
Van de Bittner, G. C., Dubikovskaya, E. A., Bertozzi, C. R. & Chang, C. J. In vivo imaging of hydrogen peroxide manufacturing in a murine tumor mannequin with a chemoselective bioluminescent reporter. Proc. Natl Acad. Sci. USA. 107, 21316–21321 (2010).
Van de Bittner, G. C., Bertozzi, C. R. & Chang, C. J. Technique for dual-analyte luciferin imaging: in vivo bioluminescence detection of hydrogen peroxide and caspase exercise in a murine mannequin of acute Irritation. J. Am. Chem. Soc. 135, 1783–1795 (2013).
Jin, L. et al. Glutamate dehydrogenase 1 alerts via antioxidant glutathione peroxidase 1 to control redox homeostasis and tumor development. Most cancers Cell 27, 257–270 (2015).
Schoenfeld, J. D. et al. O2⋅− and H2O2–mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM most cancers cells to pharmacological ascorbate. Most cancers Cell 31, 487–500 (2017).
Chung, C. Y.-S., Timblin, G. A., Saijo, Ok. & Chang, C. J. Versatile histochemical strategy to detection of hydrogen peroxide in cells and tissues primarily based on puromycin staining. J. Am. Chem. Soc. 140, 6109–6121 (2018).
Dhibi, M. et al. The consumption of excessive fats food regimen with totally different trans fatty acid ranges differentially induces oxidative stress and non alcoholic fatty liver illness (NAFLD) in rats. Nutr. Metab. 8, 65–77 (2011).
Bilan Dmitry, S. & Belousov Vsevolod, V. In vivo imaging of hydrogen peroxide with HyPer probes. Antioxid. Redox Sign. 29, 569–584 (2018).
Morgan, B. et al. Actual-time monitoring of basal H2O2 ranges with peroxiredoxin-based probes. Nat. Chem. Biol. 12, 437–443 (2016).
Srikun, D., Albers, A. E., Nam, C. I., Iavarone, A. T. & Chang, C. J. Organelle-targetable fluorescent probes for imaging hydrogen peroxide in dwelling cells through SNAP-Tag protein labeling. J. Am. Chem. Soc. 132, 4455–4465 (2010).
Dickinson, B. C., Lin, V. S. & Chang, C. J. Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of reside cells. Nat. Protoc. 8, 1249–1259 (2013).
Szweda, P. A., Tsai, L. & Szweda, L. I. Immunochemical detection of a fluorophore derived from the lipid peroxidation product 4-hydroxy-2-nonenal and lysine. In Oxidants and Antioxidants: Ultrastructure and Molecular Biology Protocols (ed. Armstrong, D.) Vol. 196 277–290 (Humana Press, 2002).
Spangler, B. et al. A reactivity-based probe of the intracellular labile ferrous iron pool. Nat. Chem. Biol. 12, 680–685 (2016).
Schmidt, E. Ok., Clavarino, G., Ceppi, M. & Pierre, P. SUnSET, a nonradioactive technique to watch protein synthesis. Nat. Strategies 6, 275–277 (2009).
Su, Ok.-H. et al. HSF1 critically attunes proteotoxic stress sensing by mTORC1 to fight stress and promote development. Nat. Cell Biol. 18, 527–539 (2016).
tom Dieck, S. et al. Direct visualization of newly synthesized goal proteins in situ. Nat. Strategies 12, 411–414 (2015).
Deliu, L. P., Ghosh, A. & Grewal, S. S. Investigation of protein synthesis in Drosophila larvae utilizing puromycin labelling. Biol. Open 6, 1229–1234 (2017).
Bielczyk-Maczyńska, E. et al. The ribosome biogenesis protein Nol9 is important for definitive hematopoiesis and pancreas morphogenesis in zebrafish. PLoS Genet. 11, e1005677 (2015).