Sunday, May 22, 2022
No menu items!
HomeChemistryUltrasound-assisted carbon ion dosimetry and vary measurement utilizing injectable polymer-shelled phase-change nanodroplets:...

Ultrasound-assisted carbon ion dosimetry and vary measurement utilizing injectable polymer-shelled phase-change nanodroplets: in vitro examine


  • Amaldi, U. Most cancers remedy with particle accelerators. Nucl. Phys. A 654, C375–C399 (1999).

    ADS 
    Article 

    Google Scholar
     

  • Degiovanni, A. & Amaldi, U. Historical past of hadron remedy accelerators. Phys. Med. 31, 322–332 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Opalka, L. et al. 3D measurement of the radiation distribution in a water phantom in a hadron remedy beam. J. Inst. 7, C01085–C01085 (2012).


    Google Scholar
     

  • Brown, A. & Go well with, H. The centenary of the invention of the Bragg peak. Radiother. Oncol. 73, 265–268 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Mohan, R., Mahajan, A. & Minsky, B. D. New methods in radiation remedy: Exploiting the complete potential of protons. Clin. Most cancers Res. 19, 6338–6343 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tobias, C. A. The way forward for heavy-ion science in biology and drugs. Radiat. Res. 103, 1–33 (1985).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tinganelli, W. & Durante, M. Carbon ion radiobiology. Cancers 12, 3022 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mohamad, O. et al. Carbon ion radiotherapy: A evaluation of medical experiences and preclinical analysis, with an emphasis on DNA injury/restore. Cancers 9, 66 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Glowa, C. et al. Carbon ion radiotherapy: Affect of tumor differentiation on native management in experimental prostate carcinomas. Radiat. Oncol. 12, 174 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jelena, Ž et al. Carbon ions of various linear power switch (LET) values induce apoptosis and G2 cell cycle arrest in radio-resistant melanoma cells. Indian J. Med. Res. 143, S120–S128 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buglewicz, D. J., Banks, A. B., Hirakawa, H., Fujimori, A. & Kato, T. A. Monoenergetic 290 MeV/n carbon-ion beam organic deadly dose distribution surrounding the Bragg peak. Sci. Rep. 9, 6157 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Liermann, J. et al. Carbon ion radiotherapy as definitive therapy in non-metastasized pancreatic most cancers: Examine protocol of the possible section II PACK-study. BMC Most cancers 20, 947 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • PTCOG: Amenities in operation. https://www.ptcog.ch/index.php/facilities-in-operation (2021).

  • Fischetti, M. et al. Inter-fractional monitoring of 12C ions remedies: Outcomes from a medical trial on the CNAO facility. Sci Rep 10, 20735 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fattori, G. et al. Dosimetric results of residual uncertainties in carbon ion therapy of head chordoma. Radiother. Oncol. 113, 66–71 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Röper, B. et al. Examine of preoperative radiotherapy for sarcomas of the extremities with intensity-modulation, image-guidance and small safety-margins (PREMISS). BMC Most cancers 15, 904 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hlavka, A. et al. Tumor mattress radiotherapy in girls following breast conserving surgical procedure for breast cancer-safety margin with/with out picture steering. Oncol. Lett. https://doi.org/10.3892/ol.2018.8083 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazzucconi, D. et al. Combined particle beam for simultaneous therapy and on-line vary verification in carbon ion remedy: Proof-of-concept examine. Med. Phys. 45, 5234–5243 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Paganetti, H. Vary uncertainties in proton remedy and the position of Monte Carlo simulations. Phys. Med. Biol. 57, R99–R117 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Solar, L., Hu, W., Lai, S., Shi, L. & Chen, J. In Vivo 3-D dose verification utilizing PET/CT pictures after carbon-ion radiation remedy. Entrance. Oncol. 11, 338 (2021).

    CAS 

    Google Scholar
     

  • Shiba, S. et al. Use of a Si/CdTe compton digital camera for in vivo real-time monitoring of annihilation gamma rays generated by carbon ion beam irradiation. Entrance. Oncol. https://doi.org/10.3389/fonc.2020.00635 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheeran, P. S. et al. Decafluorobutane as a phase-change distinction agent for low-energy extravascular ultrasonic imaging. Ultrasound Med. Biol. 37, 1518–1530 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sheeran, P. S. et al. Greater than bubbles: Creating phase-shift droplets from commercially accessible ultrasound distinction brokers. Ultrasound Med. Biol. 43, 531–540 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Toumia, Y. et al. Part change ultrasound distinction brokers with a photopolymerized diacetylene shell. Langmuir 35 , 10116–10127. https://doi.org/10.1021/acs.langmuir.9b01160 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Carlier, B. et al. Proton vary verification with ultrasound imaging utilizing injectable radiation delicate nanodroplets: A feasibility examine. Phys. Med. Biol. 65, 065013 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Heymans, S. V. et al. Modulating ultrasound distinction era from injectable nanodroplets for proton vary verification by varaying the diploma of superheat. Med. Phys. 48, 1983–1995 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Toumia, Y. et al. Ultrasound-assisted investigation of photon triggered vaporization of poly(vinylalcohol) phase-change nanodroplets: A preliminary idea examine with dosimetry perspective. Phys. Med. 89, 232–242 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Dayton, P. A. & Matsunaga, T. O. Ultrasound-mediated therapies utilizing oil and perfluorocarbon-filled nanodroplets. Drug Dev. Res. 67, 42–46 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Yoon, Y. I., Tang, W. & Chen, X. Ultrasound-mediated prognosis and remedy primarily based on ultrasound distinction brokers. Small Strategies 1, 1700173 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yoon, H. et al. Distinction-enhanced ultrasound imaging in vivo with laser-activated nanodroplets. Med. Phys. 44, 3444–3449 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Martz, T. D., Bardin, D., Sheeran, P. S., Lee, A. P. & Dayton, P. A. Microfluidic era of acoustically energetic nanodroplets. Small 8, 1876–1879 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Apfel, R. E. The superheated drop detector. Nucl. Inst. Strategies 162, 603–608 (1979).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • d’Errico, F. Basic properties of superheated drop (bubble) detectors. Radiat. Prot. Dosim. 84, 55–62 (1999).

    Article 

    Google Scholar
     

  • Mountford, P. A. & Borden, M. A. On the thermodynamics and kinetics of superheated fluorocarbon phase-change brokers. Adv. Coll. Interface. Sci. 237, 15–27 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Mirandola, A. et al. Dosimetric commissioning and high quality assurance of scanned ion beams on the Italian Nationwide Heart for Oncological Hadrontherapy. Med. Phys. 42, 5287–5300 (2015).

    MathSciNet 
    PubMed 
    Article 

    Google Scholar
     

  • Viessmann, O. M., Eckersley, R. J., Christensen-Jeffries, Ok., Tang, M. X. & Dunsby, C. Acoustic super-resolution with ultrasound and microbubbles. Phys. Med. Biol. 58, 6447–6458 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zarifi, S. et al. Bragg peak traits of proton beams inside therapeutic power vary and the comparability of stopping energy utilizing the GATE Monte Carlo simulation and the NIST information. J. Radiother. Pract. 19, 173–181 (2020).

    Article 

    Google Scholar
     

  • Kang, J. H., Wilkens, J. J. & Oelfke, U. Non-uniform depth scanning for proton remedy programs using energetic power variation. Phys. Med. Biol. 53, N149–N155 (2008).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Velten, C. & Tomé, W. A. Simulation of spread-out bragg peaks in proton beams utilizing Geant4/TOPAS. Biomed. Phys. Eng. Specific 6, 047001 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Roy, S. C. Superheated liquid and its place in radiation physics. Radiat. Phys. Chem. 61, 271–281 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Das, M. & Biswas, N. Detection of bubble nucleation occasion in superheated drop detector by the strain sensor. Pramana J. Phys. 88, 14 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • d’Errico, F. & Di Fulvio, A. Superior readout strategies for superheated emulsion detectors. Rev. Sci. Instrum. 89, 053304 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Dauba, A. et al. Current advances on ultrasound distinction brokers for blood-brain barrier opening with targeted ultrasound. Pharmaceutics 12, 1125 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Quaia, E. Classification and Security of Microbubble-Based mostly Distinction Brokers. In Distinction Media in Ultrasonography (ed. Quaia, E.) 3–14 (Springer, 2005). https://doi.org/10.1007/3-540-27214-3_1.

    Chapter 

    Google Scholar
     

  • Tsang, M.-Ok., Wong, Y.-T. & Hao, J. Reducing-edge nanomaterials for superior multimodal bioimaging purposes. Small Strategies 2, 1700265 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, G. et al. Acoustic response of focused nanodroplets post-activation utilizing excessive body charge imaging. in 2017 IEEE Worldwide Ultrasonics Symposium (IUS) 1–4 (2017). https://doi.org/10.1109/ULTSYM.2017.8092693.

  • Lee, J. Y. et al. Ultrasound-enhanced siRNA supply utilizing magnetic nanoparticle-loaded chitosan-deoxycholic acid nanodroplets. Adv. Healthcare Mater. 6, 1601246 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Toumia, Y. et al. Performances of a pristine graphene-microbubble hybrid assemble as twin imaging distinction agent and evaluation of its biodistribution by photoacoustic imaging. Half. Half. Syst. Charact. 35, 1800066 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Collado-Lara, G. et al. Spatiotemporal distribution of nanodroplet vaporization in a proton beam utilizing real-time ultrasound imaging for vary verification. Ultrasound Med. Biol. https://doi.org/10.1016/j.ultrasmedbio.2021.09.009 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sheeran, P. S., Luois, S. H., Mullin, L. B., Matsunaga, T. O. & Dayton, P. A. Design of ultrasonically-activatable nanoparticles utilizing low boiling level perfluorocarbons. Biomaterials 33, 3262–3269 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sheeran, P. S. & Dayton, P. A. Enhancing the efficiency of phase-change perfluorocarbon droplets for medical ultrasonography: Present progress, challenges, and prospects. Scientifica 2014, e579684 (2014).

    Article 

    Google Scholar
     

  • Huang, Y. et al. Polymer-stabilized perfluorobutane nanodroplets for ultrasound imaging brokers. J. Am. Chem. Soc. 139, 15–18 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Falatah, H. A. et al. Activation of section change distinction brokers utilizing ionizing radiation. J. Ultrasound Med. n/a.

  • Curtis, S. B. et al. Survival of oxygenated and hypoxic tumor cells within the extended-peak areas of heavy charged-particle beams. Radiat. Res. 90, 292–309 (1982).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Park, S. H. & Kang, J. O. Fundamentals of particle remedy I: Physics. Radiat. Oncol. J. 29, 135–146 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Durante, M. & Paganetti, H. Nuclear physics in particle remedy: A evaluation. Rep. Prog. Phys. 79, 096702 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Liu, W.-W. et al. Nanodroplet-vaporization-assisted sonoporation for extremely efficient supply of photothermal therapy. Sci. Rep. 6, 24753 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rietzel, E., Schardt, D. & Haberer, T. Vary accuracy in carbon ion therapy planning primarily based on CT-calibration with actual tissue samples. Radiat. Oncol. 2, 14 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Batista, V., Richter, D., Combs, S. E. & Jäkel, O. Planning methods for inter-fractional robustness in pancreatic sufferers handled with scanned carbon remedy. Radiat. Oncol. 12, 94 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Muraro, S. et al. Monitoring of hadrontherapy remedies via charged particle detection. Entrance. Oncol. 6, 177 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Toppi, M. et al. Monitoring carbon ion beams transverse place detecting charged secondary fragments: Outcomes from affected person therapy carried out at CNAO. Entrance. Oncol. 11, 2028 (2021).

    Article 

    Google Scholar
     

  • Pennazio, F. et al. Carbon ions beam remedy monitoring with the INSIDE in-beam PET. Phys. Med. Biol. 63, 145018 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Czarnota, G. J. et al. Tumor radiation response enhancement by acoustical stimulation of the vasculature. Proc. Natl. Acad. Sci. 109, E2033–E2041 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments